Crystal field effect induced topological crystalline insulators in monolayer IV-VI semiconductors.
نویسندگان
چکیده
Two-dimensional (2D) topological crystalline insulators (TCIs) were recently predicted in thin films of the SnTe class of IV-VI semiconductors, which can host metallic edge states protected by mirror symmetry. As thickness decreases, quantum confinement effect will increase and surpass the inverted gap below a critical thickness, turning TCIs into normal insulators. Surprisingly, based on first-principles calculations, here we demonstrate that (001) monolayers of rocksalt IV-VI semiconductors XY (X = Ge, Sn, Pb and Y = S, Se, Te) are 2D TCIs with the fundamental band gap as large as 260 meV in monolayer PbTe. This unexpected nontrivial topological phase stems from the strong crystal field effect in the monolayer, which lifts the degeneracy between p(x,y) and p(z) orbitals and leads to band inversion between cation pz and anion px,y orbitals. This crystal field effect induced topological phase offers a new strategy to find and design other atomically thin 2D topological materials.
منابع مشابه
Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator.
Three-dimensional topological crystalline insulators were recently predicted and observed in the SnTe class of IV-VI semiconductors, which host metallic surface states protected by crystal symmetries. In this work, we study thin films of these materials and expose their potential for device applications. We demonstrate that thin films of SnTe and Pb(1-x)Sn(x)Se(Te) grown along the (001) directi...
متن کاملTopological crystalline insulators in the SnTe material class.
Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe by identifying its non-zero topological index. We predict that as a manifestation of this non-trivial topology, SnTe has metallic surface ...
متن کاملLayered Topological Crystalline Insulators.
Topological crystalline insulators (TCIs) are insulating materials whose topological property relies on generic crystalline symmetries. Based on first-principles calculations, we study a three-dimensional (3D) crystal constructed by stacking two-dimensional TCI layers. Depending on the interlayer interaction, the layered crystal can realize diverse 3D topological phases characterized by two mir...
متن کاملTopological crystalline insulators.
The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal sur...
متن کاملEffects of atomic scale perturbations on Dirac surface states in topological crystalline insulators
Dienstag, 12. Januar 2016 17.15 Uhr Stuttgarter Physikalisches Kolloquium Max-Planck-Institut für Festkörperforschung Max-Planck-Institut für Intelligente Systeme Fachbereich Physik, Universität Stuttgart Hörsaal 2 D5 Stuttgarter Max-Planck-Institute, Heisenbergstraße 1, 70569 Stuttgart-Büsnau Ansprechpartner: Christian Ast E-Mail: [email protected] Telefon: 0711 689-5250 Topological crystalline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2015